ISAM FOR UTS

F. Haney
D.- Heying
R. Sharpe

Distribution: D. Cota
: R. Spinrad

AD~72-0868
November 10, 1972

L

-1-

SUMMARY
‘The addition of ISAM file capability to UTS will require

12 man-months of effort, total, for design, implementation
and checkout. "

The work will take six months.

UTS is organized to permit clean addition of the ISAM
file access method. Each access method is implemented

by a self~contained content manager. Several access

methods have been added recently at a cost of a few man-

months efforf each.

"UTS ISAM will be equivdleni‘ to XOS ISAM in performance.

UTS ISAM will provide all furctional capabilities available
in XOS ISAM.

UTS ISAM will provide automatic increase in file size (extends),

as required, a feature not available in XOS ISAM.

IL

II.

INTRODUCTION
The ISAM facility in UTS is a functional adjunct to the conventional

multi~level keyed file capability which provides superior performance
and requires less direct access storage for a special class of file mani-
pulation. Current multi~level keyed files support all of the functional
capabilities of ISAM (except for incidental differences involving the -
location of the key field and maximum key length). Enhanced perfor~
mance is provided for sequential access of ISAM files by combining
the "master-index" (of conventional keyed files) with the data. Thus,

ISAM combines the space and sequential access speed advantages of

- consecutive files with the random access by keys of keyed files.

A rew file organization, I for ISAM, is provided as a new modular

(isolatable) facility in UTS. This new file organization may be accessed

~either sequentially or randomly (by key). ISAM files must be created

sequentially (sorted=key order), but may be updated randomly (by key).

The KEYED files do not constrain keys fo be within the data record and
(currently) constrain key length to 31 bytes. The ISAM files require keys to

~ be contained within the data record, but allow keys to be up to 255 bytes

in length.

FUNCTIONAL DESCRIPTION OF ISAM FOR UTS
The ISAM file organization may be accessed via the standard file CALs
M:READ, M:WRITE and M:DELREC. Extensions are provided in three dis~

tinct system areas:
= A modular file access routine for ISAM supplements the current

sef (individual modules currently manage consecutive, keyed, and

random file organizations).
- The user control language is incidentally extended in batch (CCI)

and on-line (TEL) to reflect the new organization (indexed) and the

key length and key nosition within the data record.

= System procedures (for Meta Symbol) are expanded fo include
the new organization and the key length and key position

within the data record. -

Changes to the system procedures, CCI and TEL are only cosmetic additions
to existing parameterized facilities and hence are essenfially trivial. The
only significant development is concentrated in the provision of a new, modular

access routine.

- The control language extensions fo CCI (Batch) and TEL (on-line) are as
follows:

TEL ISET dcb params; INDEXED ;BLKL=I11;KEYP=mmm;KEYL=nnn

CCL 1 ASSIGN deb params;INDEXED, (BLKL, 111}, (KEYP, mmm), (KEYL, non)

INDEXED is a new organization and supplements the current set which are

CONSECutive, KEYED and RANDOM.

The value associated with KEYP indicates the key position relative to byte 0
of the ddfa record, while the value associated with KEYL indicates the

key length from 1 to 255 bytes. The value of BLKL indicates block length*
in bytes and will be rounded up to an integral number of 2048 byte pages for

system use.

The system procedures (reflected in the Metasymbol SYSTEM BPM) are extended

as follows: : :
M:DCB dcb, (INDEXED), (KEYP,mmm), (KEYL, nnn), (BLKL,111)
M:OPEN dcb,(INDEXED),(KEYP,mmm),(KEYL,nnn),(BLKL,“I)

No cosmetic changes are required for the procedures:

M:READ (read record)
M:WRITE (write reéord)
M:DELREC (delete record)

* The block length is assumed to be 2048 bytes (the current system standard) if

unspecified. This value allows user blocking factor control up to 8192 bytes;

logical records, however, can be as large as user memory as contrasted to the
XOS limit of 32,767 bytes. '

Iv.

The KEYL (key length) value of INDEXED would be treated exactly
as KEYM (key max. length) is now for KEYED files.
The index will automatically "prefer" RAD and the data will automatically

"prefer" DISC, however, the space for each is allocated dynamically and

" no user file space specification is required for public files. No special

utility is required for "reorganization" to eliminate overflow blocks;
standard PCL (peripheral control language) COPY will move an INDEXED
file to any device, including OVER itself, to effect reorganization. Also,
a standard LIMIT card specification for FPOOL (file pool) and IPOOL
(index pool) will provide (and allow) space to hold high=level index blocks

in core and minimize redundant (wasteful) reloading of index blocks.

The ISAM file space may be (optionally) preallocated with a suitable
specification of the RSTORE parameter (available via SET, ASSIGN,
M:DCB and M:OPEN).

PERFORMANCE A
There are several dimensicns of performance which can be examined relative

to ISAM in UTS. First the data structures in ISAM data blocks are approxi-

mately equivalent to those in UTS consecutive files. Thus, the read/write
CPU time for UTS consecutive files (about 1.7ms) is an upper bound on the
CPU time required per read/write in ISAM files.

‘The second major factor to consider in performance is elapsed time due .

to I/O accesses. There are several subfactors to consider here. First, the
No=wait I/O capability that exists in UTS will be available to allow users
to overlap CPU and compute fime. To consider other factors, a tabular list

of differences between Keyed and ISAM files will be iflustrative.

Feature

Advantage ISAM

Advantage Keyed

1. Variable (Large)
Block Sizes
vs. fixed Block
Size

2. Pre=Allocation
vs. Dynamic
Allocation

3. Key in data vs.
Keys separate from
data

Sequential Processing Requires
fewer accesses to secondary
storage due to larger block
sizes, '

Data kept proximate thus re-
quiring less arm movement; File
Deleting is faster.

Fewer /O accesses for sequential
processing. Less storage occupied
if Key is naturally part of data.

Random Processing requires
less channel and program
wait time due to smaller
amount of extraneous data

transferred. Less main memory
required to process file.

Wasted Secondary Space
kept to minimum.

Restructuring required much
less frequently. Files may be
created with Keys in any order.
Easier to update with better
representation of updates in the
index structure.

The above advantages in favor of ISAM will be provided by UTS ISAM. The

number of accesses will be reduced to the same as XOS ISAM for sequential

processing because data blocks will be variable sized and no index need be
I

consulted. The arm motion will be the same for UTS ISAM as for XOS ISAM

if pre-allocation is requested. If pre-allocation is not requested, groups of

several thousand bytes will be allocated, keeping the data relatively close

together while retaining the space efficiency of dynamic allocation. In addition,

any UTS ISAM file can be increased in size without explicit request. Deleting
files will be as fast in UTS ISAM as in XOS ISAM as a concise record is kept

of all space in the file.

V. DESIGN APPROACH

The UTS file management system provides a convenient vehicle for

addition of new access methods. Much the same approach would be
used for adding ISAM as was used in adding the Random, Consecutive,
and ANS fape access methods. This approach is represented graphically
in Figure VI.

Figure VI shows that user programs request system services via CAL's

which are uniform across access methods. CAL decoding transfers

control to the appropriate monitor routine. If the request is an open

or close request the common catalog is consulted and the data set is prepared
for accessing. If the request is an access request (read, write, position, etc.),
the appropriate content manager is called to do any access=method=dependent
processing. Each of the content managers will call IOQ for any physical data
transfers required. They will also call the File Space Allocator for any needs

to allocate secondary storage.

ISAM, an independent module, would be added as a content manager in the
same manner as the above mentioned conient managers were added. A
Content Manager Environment Simulator is available to assist in the deve-
lopment of the above mentioned content managers. This simulator, which was
used in development of consecutive AM and ANS AM, provides the interfaces
depicted in the chart (namely CAL decodes interface, physical I/O interface,
and Allocation interface). Thus, new content managers can be debugged as

- user programs from a terminal and then integrated into the system as a working

entity.

User Program

74

service requests

CAL Decoding

Read, OPEN,CLOSE | l
Write, - > Catalog
efec. ’ Consultation
Content Managers ‘
Device ANS Labelfed Random Consecutive Keyed
Access Method tape AM tape AM Access AM AM ISAM
‘ Method
. A4 4 Nz f s
Physical I/O Request N N .
~ A\ |

10Q & Hdlrs
Quevuing, Dis-

batching

FIGURE VI

File Space Reques

Y

File Space
Allocator

VL

The ISAM structure would be built as outlined in Appendix B.

Block sizes would be variable with secondary storage space used

determined by rounding block sizes to-the next multiple of 2048

bytes.” The complexity of the structure is estimated as approximately 30=40%
greater than that of UTS consecutive files. Thus, the amount of new

code required for the content manager is estimated at approximately

" 900 words. Sequential processing of ISAM files will not require any

accesses for index blocks.

Neither IOQ nor the File Space Allocator would require any modi-
fication as they are sufficiently general to handle the requirements of
ISAM. CAL decoding and Catalog routines would be modified to

recognize the new access method.

- ISAM would be added to UTS as an option available to programs whose

data are a good fit to the ISAM structure - i.e., they can avail themselves
of the potential performance gains and can tolerate the concomitant de-
crease in flexibility. Keyed files would be retained for their greater flexi-

bility and function and (in some cases) superior performance

COSTS

These cost estimates are developed by considering the size and complexity

of the tasks involved and by comparing this development with similar ones

which have been completed recently.

The major development areas are:
1) The ISAM access method itself
2) The automatic recovery interface to assure no loss of updates

in the event of a crash

3) 4 Changes to the JCL decoding in CCI and TEL to provide for new

parameters

Changes are not required to file backup and PCL utility processors
since organization information is accurately carried on file to tape and

e

tape to file operations.

Cosfs are:
Design, development, debugging, and technical documentation = 12mm
Availability time after start of project including integration - 6 months
with a new system version

These costs do not include standard overhead burden.

Similar projects completed in the last two years which are of similar com-

plexity and scope are:

development elapsed
Random files in EO0 BPM | 3mm 4 months
True consecutive files in CO0 UTS 4mm 7 months
ANS Tape facilities including 24mm 10 months

both the access method and label
validation

APPENDICES

The following two appendices show:
- Functional Description of UTS Keyed files as per the
UTS Reference Manual. ’
- ‘Functional Description of XOS ISAM as per the XOS
Reference Manual.
The keyed file description is presented here merely to indicate the similarity
to ISAM and to show that ISAM contains no major function or architectural

aspect that is not presently supported in UTS.

APPENDIX A

UTS KEYED FILES

R Y

e b By

e b Aot s

i,

e AR i

PG e
~iaulé

APPENBIND. FILE ORGANIZATION

Afile is an organized collection of information that may
only be created, modified, or deleted through the Monitor

system. A file has one base name but may have other names
synonymous with it.

Information is retrieved from q file by specifying the file

name, password, account, and the desired record within
the file.

The Monitor maintains a directory of accounts that have
files which are maintained between jobs. This is called an
Account Directory, and contains, with each eccount num -
bor, an oo o0 g o céiory of riles (termed g File Direc~
tory) for that account. A File Directory contains, with
each file name, an address of q table containing file attrj~
butes and disc locations for that file. The table is called
a File Information Table. To summarize, the Monitar has
a single Accsunt Directory, which in turn points to a File

Directory for cach account. Each File Directory, in turn,

points to a File Information Table (FIT) for each file.

Each file has associated with it (in the FIT) information
controlling who may access it and how it may be accessed.
A password and a list of which accounts may read or update
the file is recorded. Protection from unauthorized djs-
closure is attained by checking the information carried with
the file'against the information supplied by the user.

Changes to the file are allowed o disallowed based on the

- user's password and account. No accidental changes can

occur,

Afile may be shared amongseveral users providing that none
of them updates the file or attempts to replace the file,

A job cannot create q file in an account other than its own.

FILE ORGAMZATION
KEYED FILES

Keyed files are those in which each record has an identi-
fying key associated with it. Akey consists of ¢ bytestring,
the first byte of which states the number of bytes in the

string. The contents of each byte may be q binary number
or a character,

As the file is being created, a master index is also created
with an entry for each keyed record in the file. The entry
contains such information as the key, disc address of the
record, size of the record, and position of the record
within the blocking buffer,

The records are outomaticelly packed into blocking buffers
with the last portion of the |ost record extending into an-
other buffer as necessary. If the record is large, it is
written directly from the user's areq instead of being
packed into a buifer. Reyed files may be accessed by
direct or sequential access.

CONSECUTIVE FILES

Consecutive files are files whose records are organized in q
consecutive manner; i.e., the user is aware of no identi-
fying keys associated with the records. The records may

only be accessed sequentially,

-
As with Keyed files, a master index is created along with
the file. The master index contains information similar
to that for keyed files. The key will be a three-byte
‘dummy’ key, created by the Monitor, but ‘ransoarent t5
the User. As cach new record is created in a consecutive
file, the Monitor binarily increments the [ast dummy key
to obtain a nevs dummy key.

The records in consecutive files are blocked identically ts
keyed files. .

MULTI-LEVEL INDEX STRUCTURES

A multi-level index structure is a collection of hierarchical
levels of index blocks, where the entries in a higher level

point to index blocks at the next lover level and the entries
in the lowest level (called level 0) point to data records.
This is best illustrated by an example as shown in Figure D-1.

Both keyed and consecutive files have level 0 index blocks.
Only keyed files can have « multi-level index structure.
The multi-level structure js initially built during a CLOSE
if a keyed file has more than three level 0 index blocks.

In the example shown in Figure D-1, the keyed file has

o 15,570 records and the keys at level 0 point to these
data records. Based on an 11-byte maximum keylength,

there are 40 keys in each level 0 block and 127 keys
in each higher-level block. ’

o 390index blocks at level 0, four index blocks at level 1,
and one index block at level 2. The next higher-level
is built if the last level has more than three index blocks.

Each entry in a higher-lovel index block contairs the djsc
address of an index block at the next lower level, and the
key of the first key in that block.

The multi-leve!l index structure can considerably speed up
the direct access of q large keyed file, at only a small cost
of secondary storage space. Since the keys are ordered in
ascending sequence, at most it would take three index block
accesses fo locate a data record as shown in the example.
Without the higher-level index structure, it could take up
to 390 index block accesses. :

The user lmé no contral over the initicl creation of the

multi-level index structure but he can specify when and
if the higher-level structure should be rabuilt. This can

Appendix D 193

(e M ey o

Level 2
1 Index Block

———] KEY 1

Level 1
4 Index Blocks

Level O

390 Index Blocks

KEY 5041

y

>l KEY 5081

KEY 1

KEY 5081

KEY 10161

KEY 15241

KEY 5121
]

{ /
S
KEY 10121

v
KEY 10161

b—

KEY 10201

KEY 15201

v

KEY 1524}

KEY 15281

KEY 41 b

Y

et KEY 41

4

KEY 1
KEY 2

L - 4’
KEY 40

—t

b——

KEY 42

KEY 80

KEY 81

KEY 82

7 {
]

KEY 120

FE o e e e e —— s e e]

KEY 15561

KEY 1556

DSru Blocks

T
]

.

KEY 15562

P]

KEY 15570

194

Appendix D

Figure D-1. Example of Multi-Level Index Structure

ey A m i h o mpe

«snecified by using the NEWX option on the IASSIGN
d

_atrol comrnand o1 the MAOPEN and M:DCB procecures.
cont

=iz space réquired to hold a given file can be estimated by

" olying the following rules:

[P

|

i

[
§

DATA BLOCKS
1. Fach dutableck contains 2048 bytes.

Each data grenule contains one data block.
S

LY
.

Each data block is compact, except that all records
start on voord boundaries. '

‘. FEach record or record segment (if a record resides in
more than one data block) has a level O index entry
associated with it.

- 1EVEL 0 INDEX BLOCKS

1. Each index block contains 1024 bytes.
2. Each index granule contains two index blocks.

3. Each index block is compact except that 12 bytes are
preempted and spare space may be reserved at user
request.

A Each index entry occupies KEYM plus 14 bytes.

HIGHER-LEVEL INDEX BLOCKS
1. Each higher-level index block contains 2048 bytes.

2. Each higher-level index granule contains one higher-
level index block.

3. Each higher-level index block is compact except that
12 bytes are reserved.

4. Each higher-level index entry occupies KEYM plus
five bytes.

The following two examples show the cost to build the multi-
level index structure, i.e., disc accesses to build it and
disc storage required to contain it, ‘and the saving in time
when accessing it. :

Example 1
Nymber of records = 40,000
Record size = 60 bytes
Key size (KEYM) = 3 bytes
Spare space = .1
) R (40,0001(60) _
Dota gronules i 1172

_(1024-12-102)

Keys/Level 0 Index block = 7 = 53
(1024 x .1 = 102; 14 +3 =17 KEYM)
Level 0 Index blocks = 40'5200 =758
Level 0 Index granules = 379 (RAD or disc)
(758 + 2 = 379) '
758 3

Lfavel"l Index blocks (m)—/‘é

(KEYM +5 =8)

Level 1 Index granules = 3

This file reguires o tetel of 1554 granules of storage of which
three are required to store the multi-level index. It would |
cost 761 disc accesses to build the structure when the file is
closed. With the multi-level structure, each random record
fetch requires 3-2/3 device accesses, whereas without it
each fetch would be 254 accesses.

Example 2

maximum for each de-
vice (see below).

Number of data records =

Record size - 1024 bytes
Key size (KEYM) = 15 bytes
Spare spé:ce = 0
Keys/Index block = @%g—-iz—)- = 34
Keys/higher-level - ng@_—__]?_)_ =101
Index block 20
| 7242
Trem 7232 RAD | Disk Packs
Number of data 6144 24000
records.
Level 0 granules. 1 353
Level 1 granules. 2 7
Level 2 granules. 1

The cost to build the multi-level structure in the 7242
example is 714 device accesses. Without the multi-
level structure a random fetch could take 707 device
accesses in the worst case; with it, four accesses cre
required.

The reader can easily see that the cost of storing the molti-
level index structure is trivial and the one time cost to build
it can be insignificent for a large file which will be read or
updated frequently.

195

Appendix D

The following refinements of the build and rebuildlogic have
been made to better accommodate on-line system usage.

1. If the higher~level structure is being built on-line,
only the first three level 1 blocks will be built, thus
limiting the amount of time taken to build the higher~-
level structure on-line.

2. The higher-level structure will neverbe rebuilt on-line.

When a record is accessed in a file for which only a
partial higher-level occurs, and the record is beyond
the end of the current higher-level, then fevel 1 is
extended as the search for the desired key takes place.

RECORD BLOCKING

The system will automatically block records for keyed and
consecutive files in 5]12-word blocks to provide more effi-
cient use of disc space. The user has no knowledge of this
blocking and, when reading, will receive the aspropricte
record within the block and not the entire biock.,

V/hen updating a keyed file, the user may rewrite a record
in a size larger or smaller than the original reccrd size. If
necessary, the Monitor will allocate additional disc space
to accommodate the larger size.

A write with a 0 byte count will result in o master index
entry for the record with fields in the entry pertaining to
disc address, record size, and displacement into the block -
ing buffer all set to zero.

RANDOM FILES

Random files provide an organization for those users desiring
to manage their own files or who do not wish to incur the over -
head imposedby system file management. Random organiza-
tion differs from keyed and consecutive organization as follows:

L. ARandom file is simply a collection of contiguous
granules on the specified device type. The number of
granules is specified at the time the file is cpened (and
may not be expanded after it has been opened).” If the
requested number of granules dre not available con-
tiguously, an abnormal code (major code X'01', sub-
code X'08') is returned to the user and the file is not
opened.

2. The user must specify a relative starting granule num-
ber with each read or write and a byte count (the de-
fault byte count in the DCB may be used). If the
starting granule number does not fall between 0 and
the total number of gronules allocated at "OPEN" -1,
inclusive, an error code of X'42" is then returned to the
user. I the byte count exceeds granule size, the oper-
ation will continue in the next centiguous granule (s)
until all requested bytes have been transferred. The sys-
tem will return the next aveilable relative granule num-
ber to the user (in the KBUF field of the DCB) ot the
completion of cach read/virite. If there are not suffi-
cient granules to accommodate the specified byte count,
an error cade (rajar cede X'57', subcade X4 s re-
tumed to the user and the actual number of bytes trans-
miltedis placedin the RWSand ARS fields of the DCB,

196 Appendix D

-3. Each write/read consumes the entire specified
The contents of the grenule includes no system
tion. Management of the user's data is the v
bility of that user.

G
i,
espery .

4. Function has the following meaning for Random i

when any random file is opened it is first checked 7o,
- existence.

o If the file does not exist and Function is IN of
INOUT, an abnormal code of X'03' is given. .
the file does not exist and OUT or OUTINisspec;.
fied, o new Rendom file is allocated uniess the
associated account number differs from the use
account number fin this corn tho

-

file witl nu; oe
opened and an abnormal code of X'14 will be
returned).

o Ifthe file does exist, the user is checked for asy
pricte access permission (read/write account o
bers, password), end an abnormal code X'14 i
refumned if there is a violation. If there is
violation, the user may proceed to read {(unless
opened OUT) or write funless opened IN), [f- ..
file is opened OUT or QUTIN, the function is
changed to INOUT. Note that the user may wiite
in a granule in which he has already written, crg
may also read a granule in which he has not wii-

Thus, the Monitor provides allocation of granules, security
checks ond normal 1/0 queuing service and clean up. °
user is responsible for record management,

FILE ACCESS

DIRECT ACCESS

Direct access may be used only on files with keyed
organization,

OQUTPUT FILES

When o WRITE is given, a key must be specified. The ke
do not need to be given in a sorted order. They will be c:-
dered as they are stored on disc.

Unlike sequential output files, a WRITE never causes for-
ward information to be deleted.

Reading is not allowed.

SCRATCH FILES

A scratch file is identical to an output file, except that
reading is permitted before the file is closed. As for out-
put files, a key must be specified on cach Write. The
keyed record is merged into the file.

A Read may or may not specily a key. If a key is
specified, a search is made of the file until the key is
found and the record is then read. I the key is no!

APPENDIX B

XOS ISAM FILE

the case of direct-access media the actual physical disposi-
tion of information is determined solely by the system and
thus is transparent to the user. (The use of the basic direct
access method, BDAM, implies no file structure or organi-
zation whatever, and can only be used with private or non-
standard disk packs.)

The four possible file orgaﬁizctions, and the media to which
they apply, are .

© Sequential (C) - all media.

e Indexed-Sequential (1) — direct-access only.
o Partitioned (P) ~ direct-access only.
© Direct (D) — direct-access only.

.

Although, in general, each file organization corresponds to
a particular access method for file creation, several access
methods may apply for subsequent access 1o a file of given
organization. For example, a partitioned file can be
read by the assisted sequential, assisted partitioned, virtual
sequential, and virtual direct access methods.

SEQUENTIAL (C) ORGANIZATION

The sequential file organization permits sequential access
to the records or blocks of a file. It is created by either
ASAM or VSAM, and is the only organization applicable
to nonmagnetic device files as well as to files on magnetic
media. -

Depending upon file media restrictions, any of the three
record formats, F, V, or U, are allowed with use of the
assisted sequential access method. Although o sequential
file can be written or read af the logical~record level By
ASAM, it can be read (or «.1¢ .a) -.iy ~*iae block level
by VSAM. - : e

Existing sequential files on magnetic tepe are always ex-
tendable — at the cost of losing any subsequent files on the
same volume. On direct-access media, they may be ex-~
tended up to the limits of the possible space allocation; also
individual records may be deleted, or modified if the record
length is not changed.

~ INDEXED-SEQUENTIAL (I) ORGANIZATION

The indexed-sequential file organization permits either
direct access to individual logical records identified by
record key, or sequential access to records in ascending
order of their keys, starting with a specified record. A
record key is a data item within the record body, pro-
vided by the user, which serves to uniquely identify the
record. The location of a record specified by key is detor-
mined (by the system) via an index mechanism that is con-
structed and maintained by the system as part of the file.

Indexed-sequential organizationis applicable only to dircct
access media. Either F- or V~format records are allowed.
An indexed-sequential file is created using the assisted
indexed access method (ATAM).

The indexed-sequential organization is shown schemoatically
in Figure 6-9. The file is composed of data blocks, index
blocks, and (possibly) overflow blocks. Upon creation, the
file will consist of one or more data blocks, and at least one
index block. The index may be multilevel, as illustrated

in Figure 6-9 (1Ist and 2nd level index blocks). The number
of index blocks and number of levels thereof is a function

of block size, number of data blocks, and record-key lengih
(as described below). E : ‘

Prior to file creation, the user must request allocation of
sufficient file space to allow for all of the data, index, and
overflow blocks that may eventually be needed. The method
for calculating this space requirement is described below
under "Space Allocation". Also prior to creation, he must
describe to the system both the beginning byte position,
relative to byte 0'of the record body, and the length of the
record key by means of the DCB parameters KYP and KYL
respectively.

During file creation, the user must create the record keys
and write the logical records in ascending record-key
order (binary collating sequence); if a record is presented
out of ascending key order it is not accepted and an ab-
normal condition occurs. ‘

For each base data bleck written, o record-index entry i
automatically created. It is composed of the record key

corresponding fo that of the last record in the data block

and a pointer to the beginning of that block. The recorc-
index entries are blocked as are user records, and the set of
these blocks constitute the first-level ind{jx.

For each first-level index block written an index entry is
created. 1t is composed of the record key corresponding
to that of the last record-index entry in the first-level
index block and o pointer to the beginning of that block.
These index entries are blocked, similarly, into the second-
level index.

Given enoypgh data blocks, the above process applies re-
cursively with third, fourth, ..., 255th level indices pro-
duced. In general, of least one (partial) index block exists
at any level when two or more blocks exist at the next lowe:
level — including the "data block fevel®.

Overflow data blocks are created if, during subsequent up-
dating, either inserted or lengthened records cause origina’
records to be "pushed down" beyond the boundary of ¢ datc
block. The resulting overflow is automatically moved to ¢
overflow block which is linked between the two data blocks
as shown in Figure 6-9. Two or more overflow blocks can
be linked between two data blocks in this manner. Note
that overflow blocks do not appear explicitly in the index,
and are undesirable from the viewpoint of access speed o
storage space utilization. A utility processor, REORGH, i
provided to effect o reorganization of overflowed indexed
sequential files. (Sce the XDS Utilities Reference Menvol-

.

Nima®

s

A
AZ
L] AZ b m
. .
Fz - BA
FZ .
%/
FZ g
PZ o KZ o Yom GA
LZ .
. . 22 .
PZ T
L]
L
o ¢
. o MA
PZ
v
2nd level Ist level QA
vZ

Index Blocks

72

[

v

Base Data blocks

KZ

\

v

v

Overflow Data blocks

Figure 6-9. Indexed-Sequential Organization

ZL6"13

\

24 the end of the file creation process, the system auto-
watically inserts a dummy record having the maximum
possible key value (OUFF...F'). This permits subsequent
insertion of records with keys greater than that of the lost
record originclly written, eifectively allowing file exten=
sion. The dummy last record cannot be accessed by the
user program, however. . S

Care must be taken that the key field does not overlap the
deletion control character (byte 0), if the latter is speci-
fied; o program abort on file opening will occur if KYP=0
(defauli value B} in tals case.

If the ICY (index copy) opfion of ine, MiOTEIN proceduic
is specified, the system will gutematically copy the index
portion of an existing file to a temporary file in secondary
storage. This will generally result in faster direct-access
processing time, especially if the secondary-storage media
is appreciably faster than the media upon which the entire
file resides, c.g., RAD vs. disk pack.

PARTITIONED (P) ORGANIZATION

The partitioned organization permits either sequential
access to the records of a file, or direct positioning to the
beginning of a named partition of a file for subsequent
sequential access to the records thereof. This organization
is essentially an arrangement of a sequential file into
uniquely locatable subfiles.

A partitioned file is created with the assisted partitioned
access method (APAM). It is applicable only fo direct-
access media. Either F or V record format may be utilized.

The partitioned organization is shown schematically in
Figure 6-10. Note that the user's dota blocks are preceded
by, and possibly interspersed with, system=-constructed
partition key {(name) and a pointer to the first logical record
in the associated partition. The directory blocks are,
however, transparent to the user's program as they are
not accessible via assisted access methods. For exomple,

if either APAM or ASAM is used fo read o portitioned file,
they will "skip over" the directory blocks. However, the
user must, prior to file creation, request allocation of
sufficient file space to allow for both data and directory
blocks. The method for ccleulating and specifying this
space requirement is described below under "Space
Allocation".

To create o partitioned file, the user must begin by assign-
ing a partition key (with the M:STOW procedure); that is,
the file must contain af leost one partition. During creo=

tion, the user may creote as many partitions o3 desired.
addition to principal (i.e.,

In
first-assigned) partition keys,
the user may assign synonym keys, i.c., aliases of a
given portition name. The keys may be up to 255 bytes in
length.

During subsequent processing of the file, synonym keys
may be cdded, any key may be deletad, a~d new parti-
tions created. In addition, 2xisting records may be deles.-
or be modified if the record length is not changed.

It is important to note that when reading a partitioned file
(either with APAM or ASAM), the system does not detect
an end-of-partition condition: the user may read to ena-
of-file, across partition boundaries, whether starting from
a partition boundary or from beginning-of-file. A partitic-
key locates the beginning of a partition, but rot the enz <
the preceding one: therefore a partitioned file may be
given a hierarchical, or "nested", structure by the appro-
priate orderina of subsumed partitions. (End-of-partiticn
may, of course, be signaled by a user datum cerected oy
the program, e.g., @ zero-length record in \/-format.)

The pointer portion of a directory entry contains the rela-
tive block number of the block in which the associcizl

- partition begins, ond the byte displocement of that parti~

tion's first record. (Syronym entries contein, in addition,
a synonym indicator.) The partition keys are sorted, wher
necessary, and maintained in ascending order of key ve'uz

~ within the directory block chain.

DIRECT (D) ORGANIZATION

The direct organization permits direct access to blocks of =
file by relative block number (in relation to the beginnirg

_of the file, block 0), via the VDAM access method only. i

is an "unmanaged" organization relative to the C, 1,
organizations.

and ?

A direct-organization file is composed of blocks of BKL
defined (or defoult 1024-byte) length, and transmission
must begin on a block boundary. However, the length of
the data actually transmitted is specified in the M:READ cr
M:WRITE procedure by the transfer-length (TRL) option
(default = 1 block). The length of data transmitted may be
less than the block length, or may extend over several con-
tiguous blocks, but it is limited by the maximum-transfer-
length (MXL) parameter of the DCB associated with the fi'z.
No block header is created in D organization; no logice!
record structure within the block-is recognized by VDAM.

Files created by VDAM are accessable by VSAM and also
by ASAM using U record format.

TERAPORARY AliD PERBIAHENT FILES

Files on mognetic media can be cither
manent files.

temporary or per-

(The distinction is not relevant for nonmas-
netic device files, fora number of reasons.} In princi;zlc.

a permanent file is one tho! continues to exist in ¢ re-

tricvable fonn ofter the cxecution of the job that crea!
it; a temporary file does not. That is, a purmanent

USRSV P SRR

for file reference, only the STS option — with OLD or
MOD specified ~ need ba cddad.

CNAMT prIcnasinn
S b ie Pllelow i l b

Space is allocaied for the creation of o new disk or RAD
file accorsing 10 tue specified or defoult volues of the
SIZ parameter of the !ASSIGN control command (or of
the M:ASSIGN procedure, if used). The syntax of the SIZ
parameter is described in Chapter 3.

The meaning and effect of the SIZ poramater values. van
accoruing 10 ine organization of the file to be created.
They cre duscribed fur cach organization in the following
subsections.

Note thot no new space allocation can be made for a disk/
RAD file that is to be rewritten, i.e., a file replacing an
existing identicaliy-named one will occupy the some
space cllocsted fo the original file. (Status OLD; Qutput
processing mode.) :

CONSECUTIVE ORGANZATION

Valuel of the SIZ parameter specifies, in quanta of 8K
bytes, the initial amount of spoce to be allocated to the
new file. Value2 specifies the size of the increments to

. be added o the file in cose of either overflow of the initial

allocation during creation, or extension of the file during
subsequent status-MOD, Output-mode processing.

If all of the space specified by valuel is not available on
the first of a series of volumes specified, the remainder will
be allocated on succeeding volume(s).

IEBEXED-SEQUERTIAL ORGARIZATION
For an indexed-sequential file:

valuel specifies, in quania, the space fo be
allocated for buse data blocks.

value2 specifies in quanta, the space to be
allocated for (1) the creation of index blocks, and
(2) overflow blocks.

Note that unlike C and P organizotion files, the entire
and final omount of file space ~ including possible over-
flow space — is cllocated at file creation time; no sub-
sequent extensions are allowed.

If value2 is omitted or given a zero volue, the system
reserves index-block space as if all of the file. were to
be allocated for bx. . data blocks (less index spuce), and
does not allow any space for overfiow.

METILIOD OF CALCULATING THE NUMBER OF INDEX
BLOCKS REQUIRED

Since the indexed~sequential organization is relatively com-
plex, a method is presented for the calculation of the num-
ber of index blocks that will be needed (assuming that the
substantive file grows to full size), given a specified
amount of space for base data blocks (valuel — value2 X
8,192 bytes).

-

Preliminary Definitions. BKL defines the block length of
base data biocks, overfiow data blocks, and index blocks,
in bytes. Since blocks of an indexed-sequential file, re-

coardloce of

c record Tormll, ctiiain G a-uyic biock header
and a 4-byte linkage field, the usoble block size, b, is
defined as follows:

b =BKL - 8

" KYL defines the record key length, in bytes.

Both BKL and KYL are specified in the DCB corresponding
to the file to be created.

»

Values to be computed:

-~

No' the number of base data blocks.
Ex, the number of index entries per index block.

N], the number of first-level index blocks.

Ni' the number of ith level index blocks.

Equations. Assuming that (value 1-value 2) > 0, the value
No is derived as follows:

_ integer [(value T-value 2)

o portion of BKL }" 8192

Any index, entry is composed of a record key plus a
3-byte pointer to a late block. Therefore, the index-entry
length, 1, is given by

I = KYL +3

and the number of entries per index block, Ex' by
. b
Ex = integer [l]

The number of n”‘ level irdex blocks, N, is given by
the number of base dato blocks divided by the number of

5
-

Caution:

cotries in an index block, the result being rounded
ypwards to an integer, i.e.,

/
No
N] = integer T

X

Similarly

N _
Ni = integer E
X

Therefore, the total number of index blocks,
be created is

N, that will

and the total amount of space that will be reserved there-
fore, is in bytes

NxBLK

The excess of value2 x 8,192 over the amount of space
derived above will be available for overflow blocks. By
making a prehmmary estimate of value 1 and value 2, based
on the prediction size of the data portion of the file, and
then performing the colculations described above, the values
of value 1 and value 2 may be adjusted to produce the
most efficient allocation.

Since blocks on direct-access media always
being on a sector boundary and take up as
many full sectors as are required to accommodate
the block length, the user must carefully relate
BKL and the sector size of the device involved
in order not to woste direct-access media space.
Specifically, if BKL is not equal to of a multi-
ple of sector size, the equation given above
for deriving N, and thus the entire calcula-
tion, is invalidated.

PARTITIORED ORGARIZATION

Valuel of the SIZ parometer specifies, in quanta, the
initial amount of space to be allocated to the new file.

~ Value2 specifies the size of the increments to be odded

Lo the file in case of either overflow during creation, or

extension during subsequent status-MOD, Qutput-mode
processing.

6-31

2.

To arrive at appropriate SIZ parameter values for a parti~
tioned file the user should note that

1. The directory entries and the data records are kept
in separate blocks and that in both cases the effective
block length is BKL-8.

To compute the number of partition key entries a
block can contain, Ey. one must consider that the
length of each entry is, in bytes

-

KYL + 5

Thus

_ b
Ed = mteger[KYL " 5]

The probable moximum number of porﬁhon keys, both
principal and synonym, to be stowed is fherefore a factor in-
estimating the best allocation.

DIRECT ORGANIZATION

Valuel is the total amount of space, in quanta, to be
allocated to the direct-organization file. = Value2 is not
significant for thisorganization; i.e., a direct-organization
file is not extendaoble beyond its creation-time allocation.

RULE FOR ALLOCAYION OF RIULTIVOLUME
DIRECT-ACCESS FILES

For all files necessitating parallel mounting, i.e., multi-
volume direct-access files (I,P, or D organization), the
amount of space specified by valuel of the SIZ parameter
must be available exclusively on the volumes specified for
mounting or the allocation request will be refused.

PASSYIORD PROTECTION

When creating a file that is to be password protected, or
when accessing a file that has been password protected,
an Xl-class abnormal return occurs at OPEN time. The
abnormal return routine must detect obnormal code X'19'
and must then load registers 6 and 7 with a value represent-
ing the possword before executing an M:RETURN. If the
file is being created, the password is entered into the HDR3
label. If an existing file is not being accessed, then the
value is compared with the file's password in the HDR3 lobel;
and if the values are identical,
mally.
aborted.

processing continues nor-
When the passwords do not match, the job step is

Atfile creation time, the user informs the system thot o pass-
word is o be applied to the file by means of the PAS ontion
of the PRT (protection) field of the 1ASSIGN command.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06

